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ABSTRACT

An approach to predicting the effects of freestream
turbulence on turbine vane and blade heat transfer is
described. Four models for predicting the effects of
freestream turbulence were incorporated into a Navier-
Stokes CFD analysis. Predictions were compared with ex-
perimental data in order to identify an appropriate model
for use across a wide range of flow conditions. The analy-
ses were compared with data from five vane geometries and
from four rotor geometries. Each of these nine geometries
had data for different Reynolds numbers. Comparisons
were made for twenty four cases. Steady state calculations
were done because all experimental data were obtained in
steady state tests. High turbulence levels often result in
suction surface transition upstream of the throat, while at
low to moderate Reynolds numbers the pressure surface
remains laminar. A two-dimensional analysis was used be-
cause the flow is predominantly two-dimensional in the re-
gions where freestream turbulence significantly augments
surface heat transfer. Because the evaluation of models
for predicting turbulence effects can be affected by other
factors, the paper discusses modeling for transition, relam-
inarization, and near wall damping. Quantitative compar-
isons are given between the predictions and data.

Nomenclature
At - Near wall damping coefficient
C - True chord
Cx - Axial chord
D - Leading edge diameter
h - heat transfer coefficient
K - Acceleration parameter, (v/U?)(dU/ds)
k - Turbulent kinetic energy
L - Length scale
M - Mach number
Nu - Nusselt number
Pt - Pressure gradient parameter
Re - True chord exit Reynolds number
S - Surface distance
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- Turbulence intensity,%

- Velocity

Normal distance from surface
- Momentum thickness

- Kinematic viscosity

- Density

- Intermittency
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Subscripts

IN - Gas inlet

INTRODUCTION

Accurate predictive modeling of heat transfer on gas
turbine vanes and blades is a key concern in engine design
systems. The desirability of higher turbine entry temper-
atures and increased airfoil life are facilitated by accurate
blade heat transfer modeling. Among the many physi-
cal phenomena which influence turbine blade heat trans-
fer are freestream turbulence intensity and length scale.
The effects of freestream turbulence on heat transfer have
been examined experimentally by many researchers. Us-
ing flat plate measurements, Blair [1] correlated changes
in Stanton number to levels of turbulence intensity, length
scale, and Reynolds number. This work was extended
to a large, low-speed stator/rotor rig by Blair [2]. The
first stator showed strong effects of inlet Tw. The rotor
showed changes only near the leading edge due to changes
in stator inlet turbulence. But, rotors experience high pe-
riodic turbulence due to wake passing. Krishnamoorthy
and Sukhatme [3] made measurements and developed cor-
relations that included the effects of freestream turbulence
on a vane and a blade in a cascade. The correlations pre-
dicted a 75% increase in laminar heat transfer for a local
turbulence intensity of twelve percent. The effects of tur-
bulence scale were examined by Galassi et al. [4] on a rotor
in a linear cascade. They showed that the Nusselt number
increased as the scale of the turbulence decreased. Lead-
ing edge effects of freestream turbulence were examined by



Mehendale et al. [5], who showed a peak augmentation of
44%. Svensdotter and Fransson [6] measured heat transfer
on a vane in a linear cascade and focussed on transition
locations and the effects of inlet Tu. At a turbulence level
of ten percent, less than a six fold increase in Reynolds
number resulted in nearly a five fold increase in the mini-
mum heat transfer rate. At a turbulence level of 5.5%, the
increase in minimum heat transfer rate was closer to the
factor of 2.2 which would be expected for laminar flow.

Various approaches have been used to predict turbine
blade heat transfer. Ames et al. [7] used the STAN7 bound-
ary layer code of Kays [8] for heat transfer predictions.
Boyle and Simon [9] incorporated empirical models for the
effects of turbulence on transition into a two-dimensional
Navier-Stokes CFD code to predict blade heat transfer.
Because accurate transition predictions are needed for ac-
curate heat transfer predictions, intermittency transport
equations have been proposed. Vicedo et al. [10] proposed
a model for predicting separated flow transition. Suzen et
al. [11] proposed a model, and used it to predict the per-
formance of low pressure turbines. Steelant and Dick [12]
proposed a model for predicting by-pass transition using
conditionally averaged Navier-Stokes equations. The inter-
mittency transport modeling approaches have been verified
using aerodynamic data, but have not been extensively
used for heat transfer predictions.

The present work examines approaches to predicting
the effects of freestream turbulence intensity and scale on
turbine blade heat heat transfer. Freestream turbulence
primarily increases laminar heat transfer and promotes
early transition. If transition occurs close to the leading
edge, and a strong enough favorable pressure gradient fol-
lows, the surface flow is seen experimentally to relaminar-
ize. Modeling of this phenomena is incorporated in the
present investigation. The work seeks to identify an ap-
proach to predicting heat transfer which is reasonably ac-
curate when comparisons are made with experimental data
from a large variety of sources. In addition to graphical
comparisons, quantitative average heat transfer compar-
isons are made. Comparisons are made with heat transfer
data for nine turbine vane and rotor geometries for a to-
tal of twenty four cases. The data cover a wide range of
Reynolds and Mach numbers, turbulence intensities, and
length scales. The focus of this work is on the effects of
turbulence. Therefore, only the high turbulence intensity
cases will be discussed.

A two-dimensional steady state CFD analysis was used
to compare predictions with data for nine different blade
geometries, each for a range of flow conditions. The appro-
priate modeling approaches can be implemented in three-
dimensional steady and unsteady analyses to predict tur-
bine blade heat transfer in an engine environment.
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DESCRIPTION of ANALYSIS

The two primary issues explored in this paper are
different models for the effects of freestream turbulence
and modeling of the variation of freestream turbulence in-
tensity. The relaminarization criteria is also discussed.

Effects of freestream turbulence on heat transfer. The
early work for the effects of freestream turbulence focused
on the leading edge region. Smith and Kuethe [13] gave a
model for the viscosity due to freestream turbulence, vy,
as:

vy = CskTulUy

where Csg = 0.00164. In the model v, is added to the
laminar viscosity, vpam. This model, labeled as the SK
model, accounts for turbulence intensity, but does not ac-
count for the scale of turbulence.

Van Fossen et al.[14] measured the augmentation due
to freestream turbulence as a function of the scale of turbu-
lence. Data were obtained for isolated cylindrical and ellip-
tical leading edges. These data were correlated and showed
that the augmentation varied as L~/3. The —1/3 expo-
nent was also used by Dullenkopf and Mayle [15]. Boyle et
al. [16] used the data of Van Fossen et al. [14] to modify the
Smith and Kuethe correlation in order to account for the
scale of turbulence. The resulting equation for isotropic
turbulence is:

VUTu = CVFCSKTqu(D/L)l/B

where Cyp = 0.3. This model is designated as the SKVF
model. A small portion of the data in reference [14] was
for non-isotropic turbulence. Reference 16 showed that
for non-isotropic turbulence a value for Cyr near one was
more appropriate.

Ames et al. [7] proposed two models for vp,. The first
is:

4/3
vra = 0.135TulU L (1 - emp(—Z.Qy/L)) D,

where:

—0.15y )

Pr=1- emp((Ly3/1.5|u’|3)1/4

v’ is found from «' = 0.017TuU. This model is designated
the AMS model

The second model incorporates a leading edge effect
to give:

V’}‘u/VTu =1+ ((ReD/4)1/12 - 1)famp



vy is calculated as in the AMS model, and v7, is the
complete model. The term fanp is used to cause v, to
become v, away from the leading edge. It is given by:

dU(s)/ds )2>

Since this model is intended to apply in the leading edge
region, famp was set to zero once dU/ds < 0. This model
is designated the AMLE model.

The SK, SKVF, and AMLE models were developed
to account for augmentation in leading edge region. An
objective of this work is to determine how well these models
predict heat transfer away from the leading edge region.

Figure 1 shows the variation of v, /viam with dis-
tance from the blade surface for typical conditions. Near
the wall both the AMS and ALE models have much lower
values than either the SK or SKVF models, and the fig-
ure shows that these lower values are due to the damping
term. If heat transfer augmentation is primarily deter-
mined by near wall augmentation, the undamped models,
(SK and SKVF), are expected to show significantly higher
augmentation than the AMS or AMLE models. However,
if augmentation in the outer region of the boundary layer
is significant, then the differences among the four models
may be small. Since L/D = 1.0 is constant, the SKVF
model values are 30% of the SK model values.

The SK and SKVF models use an integral length scale,
while the AMS and AMLE models use an energy length
scale. In the comparisons the same length scale was used
for all models. Measurements given by Ames [17] showed
a variable ratio for the two length scales, but the integral
length scale was at least half of the energy length scale.

Transition modeling. An accurate evaluation of any
model for the effects of freestream turbulence requires ac-
curate models for the start and length of transition. The
start of transition was predicted using Mayle’s [18] model.

(Reg)starr = 4007w /%

The local value of Rey was determined using Twaites’s
approach as given by White [19]. The calculation of the
local value of T'u was done using two approaches. In one
approach u’ was assumed constant, so that TulU remains
constant. Consequently, around the blade TuU is equal to
its upstream value. Calculations made using this assump-
tion are denoted as the constant k predictions.

The second approach uses the model of Steelant and
Dick [20], where:

Tu = T’U,IN(UIN/U)B/2
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Fig. 1 Viscosity ratio variation with distance

Here, the TuU product does not remain constant. When
the inviscid velocity is twice the inlet velocity, the local
freestream turbulence is only 35% of the inlet value. Mea-
surements of the turbulence intensity at the inlet and exit
of a vane cascade by Boyle et al. [21], and by Zhang and
Han [22] for a rotor cascade showed a decrease in T'u consis-
tent with the Steelant and Dick model. Calculations made
with this assumption are denoted as the SD predictions.

No attempt was made to account for the effects of the
scale of turbulence on the start or length of transition.
Jonas et al. [23] showed that the start and length were
affected by the scale of turbulence. However, in their ex-
periments both the turbulence intensity and scale varied
simultaneously. Using Mayle’s model to recalculate the
experimental start of transition to a common turbulence
intensity showed no significant effects of the scale of tur-
bulence on either the start or length of transition.

The transition length was calculated using the proce-
dure described by Boyle and Simon [9], which applies a
Mach number correction to the transition length model
described by Solomon et al. [24]. Predictions using this
model are labeled SWGM. Predictions were also made us-
ing the Abu-Ghannam and Shaw [25] transition length
model. Predictions using this model are labeled AGS.

Relaminarization. Heat transfer distributions consis-
tent with relaminarized flow were often seen on rotor pres-
sure surfaces. Relaminarization was assumed to occur
whenever K exceeded a critical value of 3 x 107%. K was
calculated either from the local velocity gradient, or from
the lagged value of the pressure gradient parameter, PT.

K = —PH(C;/2)%/?



Table I. Description of test cases.

Table II. Designation for model assumptions

where Cf/2 is the friction coefficient. Lagging was done
using the approach described by Crawford and Kays [26].

When the intermittency, 7, was > 0, and the flow was
no longer laminar, the turbulent eddy viscosity, vy, was
calculated using the algebraic turbulence model described
by Chima et al. [27]. The effect of assuming the near wall
damping coefficient in the turbulence model, AT, to be a
function of P* was also examined.

Since correlations were used for the start and length
of transition as well as specifying relaminarization, it was
felt that an algebraic turbulence model was appropriate.
Many of the cases examined were in the transitional flow
regime. Two-equation models, such as the one described
by Ameri and Arnone [28], tend to mimic transition, but
do not accurately predict it.

In summary, the total viscosity is given by:

vroTAL = Vram + (1 — T)vrg + 71

These models were implemented in the quasi-3D
Navier-Stokes code RVCQ3D. This code has been docu-
mented by Chima [29]. All of the test cases were linear
cascades, so that only a two-dimensional analysis was done.
C-type grids, typically 377 x 55, were used. Reference
9 gives a more detailed description of the analysis. The
solutions were monitored to assure that convergence was
achieved.
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Source | Rey | Tuiy | L/Cx | Due/Cx | My | Cx/C Label Aug. Tu Relamin. | Transition | Near wall
Ref. | x107° % variation length damping
Vanes NO-SD-RL-S-AV | None SD Lagged SWGM Var At
7| 050 | 1311029 1 0.22 0051 052 | | SK-SD-RL-S-AV | SK SD Lagged | SWGM | Var A*
- ggg ;g;‘ 8;3 1 gég oz | VF-SD-RL-S-AV | SKVF SD Lagged | SWGM | Var AT
2:00 20:3 0:28 ’ 0:18 ’ AM-SD-RL-S-AV | AMS SD Lagged SWGM Var At
T oss T oa o0 930 097 055 | LAL-SD-RL-S-AV | AMLE | SD | Lagged | SWGM | Var AT
0.80 12.0 | 0.43 0.27 AM-CK-RL-S-AV | AMS constant k | Lagged SWGM Var AT
31| 111 100 | 0.41 | 0.61 0.08 | 0.49 AM-SD-RY-S-AV | AMS SD Yes SWGM Var At
111 | 19.5 | 0.41 0.08 AM-SD-NR-S-AV | AMS SD No SWGM Var AT
32| 0.5 60018 |0.22 11 | 055 AM-SD-RL-A-AV | AMS SD Lagged | AGS Var A+
1.09 6.01]0.18 1.1 AM-SD-RL-S-AC | AMS SD Lagged SWGM At =26
2.11 6.0 | 0.18 0.92
2.11 6.0 | 0.18 1.1
Rotors DISCUSSION of RESULTS
22 0.30 14 | 0.01 0.10 0.05 | 0.75
3 8% g 82; 008 g;g 056 Comparisons were made with nine different blade ge-
1.03 13 | 0.42 0.69 ometries. Five were vane geometries and four were rotor
34| 045 13045 |[0.14 0.75 | 0.83 geometries. Table 1 gives some of the characteristics of the
0.75 131 045 0.75 cases examined. The vane cases of Ames et al. [7] were
119 13 | 045 0.4 for a large scale vane at low Mach numbers. The cases
35 0.54 41 0.11 0.10 1.05 | 0.88
1.05 61011 1.05 of Ames et al. [30] were for a different geometry, which
1.05 4011 0.8 produced a more aft loaded vane. The cases of Ames [17]
1.05 41011 1.3 were a third geometry, and was tested at an exit Mach
1.84 410.11 1.05

number of 0.27. The vane of Radomsky and Thole [31]
had a distinctive geometry, which resulted in a forward
loaded vane. Ideally, all cases would have both the inlet
turbulence intensity and length scale specified. However,
most of the vane test cases that met this requirement were
for incompressible exit Mach numbers. The vane cases of
Arts et al. [32] were included even though the length scale
could only be estimated because the data were at engine
typical Mach numbers.

Onuly the rotor of Zhang and Han [22] was for an incom-
pressible exit Mach number. The rotors of Giel et al. [33],
and that of Giel et al. [34] were tested in the same facility,
but the blade geometries and Reynolds numbers were dif-
ferent. The rotor cases of Arts et al. [35] was included even
though the length scale could only be estimated, because
it had both a different geometry and an engine realistic
wall-to-gas temperature ratio.

Table IT shows the the model assumptions used for the
comparisons with data. The labels shown in Table IT are
also used later in Table III, where quantitative summaries
are given for the ten modeling assumptions. The first five
entries in Table II are for different augmentation models,
and a common set of other modeling assumptions. The
next five entries use the AMS augmentation model and
vary one other model assumption. The variable A1 calcu-
lations were done using the relationship given by Crawford
and Kays [26] for AT as a function of P*. Calculations
were also done using the relationship of Cebeci and Smith
[36] for AT as a function of P™. They are not discussed,
since the results were close to those assuming AT = 26.
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Fig. 2 Comparisons with data of Ames et al.[7]

Other combinations of model assumptions were examined,
and will be mentioned. Overall, the other combinations
did not yield better agreement with data. In the following
figures the prediction curves are color coded to denote the
augmentation model used. Lines with no augmentation
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are black. Lines using the SK model are red, and those
using the SKVF model are cyan. The AMS model results
are in green, and the AMLE model results are in orange.
When purple is used, the AMS model assumption was al-
ways made.

For discussion purposes the blade surface is divided
into three regions: pressure surface, leading edge region,
and suction surface. The leading edge region begins near
the minimum heat transfer point on the pressure surface,
and extends to the first minimum on the suction surface.

This work focuses on heat transfer comparisons for
high inlet turbulence intensities. While comparisons were
done for both surface pressure distributions and low turbu-
lence intensity heat transfer cases, they are not included.
Differences between measured and predicted pressure dis-
tributions were not large, and were not believed to be
the cause of disagreements between calculations and data.
At low inlet Tu, measurements generally showed laminar
heat transfer distributions, and the analysis accurately pre-
dicted theses cases.

Vanes

Ames et al. [7]. Figure 2 shows comparisons for two
Reynolds numbers for the cases given in reference 7. The
comparisons at Re = 0.5 x 10° show excellent agreement
with the pressure surface heat transfer using the AMS
model with the constant k assumption for the variation in
freestream turbulence. The AMLE model results for the
pressure surface away from the leading edge were the same
as those for the AMS model. Accounting for turbulence
effects using these models increases the pressure side heat
transfer by nearly 50%. No augmentation underpredicts
the data everywhere, while the SK model overpredicts the
heat transfer by nearly 50%. The SKVF model results are
somewhat lower than the AMS model results. For the rear
half of the pressure surface the AMS and AMLE models
have the same prediicted heat transfer. Here the SD as-
sumption for the variation of freestream T'u underpredicts
heat transfer. At the higher Reynolds number transition
is seen earlier than predicted. The constant k assumption
was somewhat better that the SD model, and AGS model
agreed better with the data than the SWGM model. A
further improvement is achieved when AT is constant.

In the leading edge region the augmentation models
use the inlet values for the TuU product. In this region
the SK model overpredicts the heat transfer. Although the
AMLE model underpredicts the heat transfer, it is closer
to the data than the other model predictions.

On the suction surface the AMLE model gives good
agreement with data at the higher Reynolds number. Be-
cause of transition issues the agreement is not good at



4.5

[ Re=5X10°
- SK _
4| Pressure Suction
- surface surface
35
3
o [
o B
o B
25
x B
- B
) B
2r
15F
1F
[ NoAug. SD model
0_57\Hluul\u\|HHluuluul\u\|HH|HH|HH|HH|

-05-04-0.3-02-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Surface distance, m
a) Re=500,000

35 Re<2x10° Suction
B surface
| Pressure constant k
3~ surface
25
S oF
p= B
\D B
x B
515f
1
05
L No Aug. constant k
O7\\HIHHI\H\IHHI\\HIHHI\H\IHHIHHIHHIHHI

-05-04-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Surface distance, m
a) Re=2,000,000
Fig. 3 Comparisons with data of Ames et al.[30]

the lower Reynolds number. The constant & model for the
variation of Tu significantly improves the agreement with
data. The AGS transition length model in conjunction
with the constant k assumption is in very good agreement
with data at the low Reynolds number. However, at the
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high Reynolds number these assumptions result in transi-
tion that is too early and too abrupt.

For this geometry the best agreement with data was
achieved using the AMLE model and the AGS transition
length model.

Ames et al.[30]. Figure 3 shows comparisons with the
data from reference 30. While exit Mach and Reynolds
numbers are the same as for the previous geometry, the
vane pressure distribution differs, and the turbulence level
is nearly 50% higher. Although the data in figures 2 and
3 are similar, the degree of agreement for each model as-
sumption is different. The AMLE model results are in
best agreement near the stagnation point. However, for
the leading edge region as a whole, the AMS model is
preferred for the comparisons in figure 3. On the pres-
sure surface the primary difference is that the constant k
assumption overpredicts the low Reynolds number data in
figure 3. The AMS and AMLE models gave the best agree-
ment for pressure side heat transfer. The AGS model is
preferred over the SWGM model for the higher Reynolds
number case. When used with the constant k& assumption
and AT = 26 the pressure surface is again well predicted.

At the lower Reynolds number the suction surface heat
transfer is not well predicted. The constant k assumption
for T'w variation is better. While the AGS transition length
model is conservative, it is not closer to the data than the
SWGM model. However, at the higher Reynolds number
the SD model for Tw variation in conjunction with the
AGS transition length model agrees well with the data in
the transition region. Afterwards, the predictions fall off
more rapidly than the data.

For this geometry the AMS model gives the best agree-
ment with data. The AGS model for transition length
is more appropriate for the pressure surface, but predicts
too rapid a rise for the suction surface heat transfer. For
the lower Reynolds number, assuming constant k is ap-
propriate. However, for the higher Reynolds number, the
SD variation is better. The constant k& assumption gives
gives higher heat transfer, and therefore a more conserva-
tive prediction. The results in figures 2 and 3 suggest that
predictions be run using the constant & assumption for Tu
variation and the AGS transition length model.

Ames et al.[17]. The heat transfer results for the third
vane are presented in figure 4. The highest turbulence in-
tensity was near 12%, and data were obtained at Reynolds
numbers of 0.52 and 0.8 x 10%. The first thing to note
is that in figure 4 the AGS transition length model gives
poor agreement with the suction surface data. For the
entire leading edge region the AMLE model gives good
agreement with the experimental data. In this region the
AMS model predicts slightly lower heat transfer.
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On the pressure surface the constant k£ assumption
agrees well with the data for either the AMS or AMLE

model. The SKVF results are lower, but still significantly
better than no augmentation. The SK model results are
much higher than the data, everywhere, except after suc-
tion surface transition.
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On the suction surface the transition location is well
predicted using either the constant k& or SD assumptions
for the variation in T'u. Transition is rapid, and all mod-
els except the SK model excessively overpredict the heat
transfer. This overprediction has only a small effect on the
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average heat transfer for the suction surface. However,
when the goodness measure for a model is how well it pre-
dicts the local heat transfer, the spike in heat transfer in
some sense distorts the comparison. A comparison based
on a square root of the sum of the squares of the difference
between predicted and measured heat transfer will be large
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due to a few large differences in a small fraction of the
surface distance.

For this geometry the AMLE model gives the best agree-
ment with data. When using the SWGM transition model,
assuming k is constant is slightly preferable to using the
SD model. This is because the suction surface transition
is abrupt, and only slightly influenced by the local Tu.



Radomsky and Thole [31]. Comparisons for the fourth
vane geometry are given in figure 5. Comparisons are
shown for a single Reynolds number at inlet turbulence in-
tensities of 10 and 20%. This geometry has a large leading
edge diameter-to-chord ratio. Consequently, the L/D for
the scale of turbulence is relatively small. On the pressure
surface the AMLE, AMS, and SKVF models accurately
predict the surface heat transfer for Tu = 10%, but over
predict the heat transfer at Tu = 20%. The minimum ex-
perimental heat transfer is nearly the same at both turbu-
lence intensities. There is a more rapid rise in the pressure
surface heat transfer at Tu = 20%, suggestive of transition.
However, no pressure surface transition was predicted.

In the leading edge region the AMLE model predicted
the heat transfer best at Tu = 10%. However, it over
predicted the heat transfer in this region at the higher
turbulence intensity. At Tu = 20% the AMS model agreed
best with the data in the leading edge region. Results
using the SKVF model were between those for the AMS
and AMLE models.

On the suction surface transition is accurately pre-
dicted using the the SD model at Tu = 10%. Although
not shown, the constant k prediction also accurately pre-
dicted transition. At Tu = 20% the measured heat transfer
lies between predictions using these assumptions. inlet Tu
of 10% prior to transition. After transition the predicted
heat transfer agree reasonably well with the data, even
though the downward slope in the predictions is greater
than that seen in the data. The AGS model had a much
longer transition length than is seen in the data.

Overall, the agreement for these cases is reasonably
good. There is a small preference for using the AMS model,
since it does not overpredict the leading edge region data
at Tu = 20%.

Arts et al.[32]. Results for the last vane geometry to
be compared are shown in figure 6. In contrast to the
other vane test cases this is a transonic vane. Comparisons
are made at three Reynolds numbers and an exit Mach
number of 1.1. A fourth comparison is shown at an exit
Mach number of 0.92. Data were given for three turbulence
intensities, and the comparisons are shown for the highest
value of 6%.

The comparisons for the pressure surface away from
the leading edge will be discussed first. At the two lower
Reynolds numbers the pressure surface heat transfer is not
well predicted. The data indicate transition, but none of
the models predict it. There is a slight improvement using
the constant k assumption for the variation in Tu. Prior
to the start of transition all augmentation models except
the SK model are in reasonably good agreement with the
data. The increase over the no augmentation model results
is significant. At the highest Reynolds number of 2.1 x 10°
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the analysis shows the same trends as the data, but the
predicted transition start location is too late. The AGS
transition length model, or assuming A+ = 26 in conjunc-
tion with the SWGM transition length model both result
in reasonably accurate heat transfer predictions. The high
Reynolds number data also illustrate issues associated with
relaminarization. The assumption of no relaminarization
initially gives very low heat transfer. This is because A* is
a function of P*, and this is a region with strong favorable
pressure gradients. These data show that it is appropriate
to lag K when relaminarization is allowed. Assuming no
lag in relaminarization results in laminar heat transfer for
the entire pressure surface, and gives a heat transfer close
to the trailing edge only 40% of the experimental data.
The no augmentation prediction agrees well with data in
reference 32 for a low Tu of 1%.

These data are the first to show that in the leading
edge region the SK model is the preferred model, especially
at the lower Reynolds numbers. At the highest Reynolds
number the SK model is higher than the data in the lead-
ing edge region, and overpredicts for the front portion of
the suction surface. Considering the other augmentation
models, the AMLE model provides the better agreement.

At the two lower Reynolds numbers the suction side
heat transfer is mostly laminar. All predictions agree with
the data at the data at the lowest Reynolds number, in-
cluding predicting the very rapid heat transfer rise at the
trailing edge. At the next higher Reynolds number the
shock behavior near s = 0.04m is well predicted. However,
the data show transition beginning shortly afterwards, but
it is not predicted. At the highest Reynolds number suc-
tion surface transition occurs earlier than predicted. Al-
though no shown, the constant k& assumption gave essen-
tially the same predictions as the SD model assumptions.
The assumption of no relaminarization is an improvement
at the transonic exit Mach number, but gives only a slight
improvement at the the subsonic exit Mach number. Prior
to transition the AMLE model agrees well with the suc-
tion surface data. No prediction shows the constant heat
transfer seen towards the rear of the suction surface at
My = 1.1. This plateau is not seen for the subsonic exit
Mach number.

For this transonic vane the SK model predictions
agreed better with the data than the AMLE predictions.
On the pressure surface, the constant k assumption im-
proved predictions at low Reynolds numbers.

Rotors

While there are similarities between vane and rotor
heat transfer distributions, there are significant differences,
even when comparing steady state cascade tests. For the



same exit Mach number, rotors typically have much higher
inlet velocities than do vanes. The leading edge diameter-
to-chord ratio is often lower for rotors. These factors can
result in very high heat transfer in the rotor leading edge
region. Most rotor test cases have an adverse pressure
gradient on the pressure side close to the leading edge.
This leads to the prediction of abrupt transition at al-
most all Reynolds numbers. However, at low and mod-
erate Reynolds numbers the pressure surface heat transfer
is mostly laminar like, since the adverse pressure gradient
is almost immediately followed by a strong favorable pres-
sure gradient. A challenge for any heat transfer prediction
methodology is to predict pressure surface heat transfer in
this rapidly changing pressure field.

Heat transfer comparisons are shown for four rotor
geometries. Comparisons are shown for the highest inlet
turbulence intensity for which data were available. Com-
parisons are shown at different Reynolds numbers, but for
brevity, only at one inlet flow angle for each geometry. One
of the four rotor test conditions is for incompressible flow
conditions. Two others are for subsonic exit Mach num-
bers, and the fourth is for an exit Mach number of 1.1.

Data of Zhang and Han[22]. Figure 7 compares data
at the lowest and highest Reynolds numbers. The inlet Tu
was 14% and 17% respectively. Due to an adverse pres-
sure gradient, pressure surface transition was predicted to
occur very close to the leading edge. Abrupt transition to
fully turbulent flow was predicted. Following transition the
AMS and AMLE model predictions are identical. At both
Reynolds numbers transition was immediately followed by
predicted relaminarization. The inlet T'u is high. Even so,
the pressure side experimental heat transfer distributions
are flat, which is consistent with laminar flow. The con-
stant k assumption for the variation in Tu gives excellent
agreement for the lower Reynolds number case and good
agreement in terms of the shape of the pressure surface
heat transfer distribution at the higher Reynolds number.

Pressure surface comparisons at both Reynolds num-
bers show that the relaminarized prediction without aug-
mentation is about a third of the experimental data. Al-
though not shown in figure 7, this prediction agrees rea-
sonably well with the experimental data at low T'u. Figure
7 shows that at both Reynolds numbers prediction without
relaminarization have very low pressure surface heat trans-
fer. The calculations were done assuming A™ to be a func-
tion of Pt using the Crawford and Kays[26] relationship.
This relationship was developed to improve predictions for
turbulent flows in the presence of favorable pressure gra-
dients, and yields a higher value of AT than that given
by Cebeci and Smith[36]. It is most evident at the higher
Reynolds number that this predicts a laminar-like bound-
ary layer without any augmentation due to freestream
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turbulence. Explicit relaminarization is more appropriate
for turbine heat transfer applications.

In the leading edge region at both Reynolds numbers no
augmentation underpredicts the measured heat transfer.
At the lower Reynolds number the AMLE and SK models



are close to the data at the stagnation point. While, at the
higher Reynolds number the SKVF and AMS models are
close to the stagnation point data. On the pressure side of
the leading edge region the agreement with data is good.
However, on the suction side of this region the high heat
transfer zone is wider than the data, especially using the
AMLE model.

On the suction surface transition is not accurately pre-
dicted at either Reynolds number. The start of transi-
tion was predicted to be at 0.67 < s/C < 0.84 using the
constant k& or SD models at the lower Reynolds number.
However, very long transition lengths were predicted. This
resulted in much lower heat transfer than was measured.

For this rotor geometry augmentation along with re-
laminarization showed a significant improvement for pres-
sure surface heat transfer. The constant k& assumption was
better than the SD assumption. In the leading edge region
the SKVF model was reasonably accurate, and the AMLE
model produced too wide of a heat transfer distribution.
The suction surface heat transfer was underpredicted after
the start of transition.

Data of Giel et al.[33]. Figure 8 compares predictions
with data for two Reynolds numbers. The inlet Tu was
13%. For both Reynolds numbers the analysis predicted
an abrupt pressure surface transition followed by relami-
narization using a value for Kcryr of 3 X 106, After tran-
sition, but before relaminarization, the analysis assumed
no augmentation due to freestream turbulence. With no
lag in relaminarization this region is relatively wide, and
prior to relaminarization the heat transfer is not well pre-
dicted. At seen in some previous comparisons, the constant
k assumption along with relaminarization overpredicts the
measured heat transfer. However, here the SD model as-
sumption gives even higher heat transfer. In this region the
analysis underpredicted pressure side heat transfer. The
SKVF augmentation model agrees best with the data for
the rear portion of the pressure surface at either Reynolds
number. As expected, no augmentation underpredicted
the pressure side heat transfer. Figure 8a shows that the
SK model excessively overpredicts pressure side and lead-
ing edge heat transfer. The same behavior was seen at the
higher Reynolds number.

In the leading edge region the AMLE model agreed
best with the low Reynolds number stagnation region heat
transfer, but exceeded the data at the higher Reynolds
number. Because of the broader heat transfer distribution
on the suction side of the leading edge the SKVF model is
the preferred model.

On the suction surface the predicted heat transfer
varies significantly with the modeling assumption used,
with SKVF model showing the best results. At s/C = 1.2
the predictions show heat transfer consistent with separa-
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tion and rapid reattachment. This is not shock induced,
and is not seen in the data. After this location all calcu-
lations overpredict the heat transfer. Assuming no relami-
narization, or not lagging the relaminarization gave poorer
agreement with the data. The data at the higher Reynolds
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number indicate relaminarization is appropriate. Close to
the leading edge the heat transfer indicates transition, but
the subsequent rapid heat transfer decrease shows a return
to laminar-like heat transfer.

Overall, for this geometry the SKVF augmentation
model agreed best with the data. The AMS model also
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gave reasonably accurate predictions for the suction sur-
face. On the suction surface predictions were sensitive to
the whether or not K was calculated using a lag equation.

Data of Giel et al.[34]. Figure 9 shows comparisons for
three Reynolds numbers between 0.45 and 1.49 x 105. Pre-
dictions and data show that, for the two lower Reynolds
numbers, the pressure surface relaminarized. After relam-
inarization the AMS and AMLE model predictions are the
same. The SK model model results are not shown be-
cause they gave very high leading edge region heat trans-
fer rates. There is also a significant difference in predicted
heat transfer depending on which model is used for aug-
mentation. Figure 2 shows that the SKVF model has
greater augmentation than the AMS model in the near
wall region, but lower augmentation away from the surface.
Consequently, the SKVF prediction gave much lower heat
transfer close to the leading edge. Due to the large values
of AT in the favorable pressure gradient of the pressure
surface at the two lower Reynolds numbers, the no relam-
inarization prediction gives very low heat transfer rates.
At the highest Reynolds number the pressure surface data
show heat transfer consistent with turbulent flow. The
best agreement was achieved when AT was set to 26. A
calculation using the Cebeci-Smith variation of A% with
P was similar to the one assuming AT = 26.

In the leading edge region both the AMS and SKVF
models are in good agreement with data for the peak heat
transfer at all Reynolds numbers. On the suction side of
the leading edge region the AMS model has a wider heat
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Fig. 10 Comparisons with data of Arts et al.[35]

transfer distribution than the SKVF model. The AMLE
model distribution is wider than the AMS distribution.
On the suction surface the SKVF model agrees well
with the data at the two lower Reynolds numbers. The
constant k assumption shows poorer agreement with data
than does the SD model for the variation in Tu. At the
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highest Reynolds number the data show similar behavior
to that seen in figure 8b. Close to the leading edge there
is transition followed by a rapid decrease in heat transfer,
consistent with relaminarization. Both the AGS model
and no relaminarization assumption show the transitional
behavior. However, the predicted heat transfer remains
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high, while the data decreases.

Data of Arts et al.[35]. Figure 10 shows comparisons
for the rotor of Arts et al. [35]. Only one case had an
inlet Tu of 6%. For the remaining cases the inlet Tu was
only 4%. Even though the inlet Tu was fairly low, the
models predict a significant heat transfer increase due to
turbulence. At all Reynolds numbers, no augmentation
underpredicts the pressure surface data. The SK model
results overpredict the heat transfer prior to transition. At
the lowest Reynolds number the AMS and AMLE results
agree best with the data. The SKVF results are somewhat
lower. Here, the constant k assumption does not improve
agreement with data. The three cases at the intermediate
Reynolds number have similar behavior. The data show
transition over the latter half of the pressure surface, and
this is only predicted using the AGS transition model or
assuming no relaminarization. Figure 8d shows that for
Ms = 1.3, the AGS model heat transfer remains low for
a large fraction of the pressure surface. When no relami-
narization is assumed, the heat transfer is well predicted
for the rear half of the pressure surface. However, the heat
transfer is underpredicted for the forward half of the pres-
sure surface. For the highest Reynolds number the effect of
assumptions regarding relaminarization are clearly seen on
the rear half of the pressure surface. No lag in relaminar-
ization yields very low heat transfer. No relaminarization
yields very good agreement. Predictions using the lagged
model are midway between these two predictions.
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Table III. Overall heat transfer differences,%

Model Pressure surface Suction surface
Avg. [ Diff Avg. [ Diff
Vanes
NO-SD-RL-S-AV | -32.4 £+ 16 39 | -31.3 £ 16 32
SK-SD-RL-S-AV 28.2 £ 18 39 2.0 £ 17 28
AM-SD-RL-S-AV -6.6 & 12 21 | -17.9 £ 15 25
VF-SD-RL-S-AV -9.8 £ 15 23 | -19.4 £ 15 25
AL-SD-RL-S-AV 21+ 14 21 -9.1 £ 19 25
AM-CK-RL-S-AV -3.3 £ 12 18 | -10.7 &£ 12 19
AM-SD-RY-S-AV | -11.8 + 17 25 | -12.6 £ 14 24
AM-SD-NR-S-AV -9.1 + 17 25 | -16.6 £ 17 24
AM-SD-RL-A-AV 3.4 + 12 20 | -23.1 £ 15 28
AM-SD-RL-S-AC 4.1+ 14 22 | -221+ 14 24
Rotors

NO-SD-RL-S-AV | -19.2 &+ 15 37 | -23.2 £ 16 32
SK-SD-RL-S-AV 40.1 £ 26 52 42.5 + 32 43
AM-SD-RL-S-AV 2.6 £ 18 22 6.9 £ 15 22
VF-SD-RL-S-AV 4.4 + 20 27 1.4 + 13 20
AL-SD-RL-S-AV 6.4 4+ 18 26 | 26.3 £ 27 33
AM-CK-RL-S-AV 2.3 +£19 23 16.5 = 19 25
AM-SD-RY-S-AV -2.8 + 23 30 13.2 £ 17 24
AM-SD-NR-S-AV 7.8+ 8 22 15.2 + 21 28
AM-SD-RL-A-AV -0.9 £ 18 21 18.6 &+ 18 30
AM-SD-RL-S-AC 7.5+ 15 23 7.4 £ 15 22

In the leading edge region both the AMLE and SKVF
models agrees best with the data at all Reynolds numbers.
Here, the AMLE model does not show a wide heat transfer
distribution on the suction side of the leading edge region.

On the suction surface there is good agreement with
data at the lowest Reynolds number prior to the throat.
As expected, the SK augmentation model overpredicts the
heat transfer. The constant k model for T'u variation also
overpredicts the heat transfer as a result of predicting an
earlier transition start. The constant k model predicts a
heat transfer rise after the throat, but still less than is seen
in the data. Figure 10b shows that, at the middle Reynolds
number and Tu = 6%, the AGS model predicts the initial
rise in heat transfer. However, for the remainder of the
suction surface this model’s prediction is much higher than
the data. Figures 10c-10e show that this model predicts a
heat transfer rise due to transition prior to when it is seen
in the data. Figures 10b, d, and e show that the analysis
accurately predicted the heat transfer for the rear of the
suction surface at My = 0.8 and My = 1.3. However, at
the intermediate Mach number the predictions were not as
accurate. Figure 10c shows that at the highest Reynolds
number, the analysis overpredicted suction surface heat
transfer over nearly half the surface distance.

CONCLUDING REMARKS

This work has shown the importance of including a
model for the effects of freestream turbulence on laminar



heat transfer. Table III summarizes the differences be-
tween predicted and measured heat transfer for all cases
for both the pressure and suction surfaces. Even though
the vanes and rotors are compared separately there is a
similarity in the results. The no augmentation model un-
derpredicts the pressure surface heat transfer by approxi-
mately forty percent for both the vanes and rotors. This
model underpredicts the suction surface by approximately
twenty percent. The SK model overpredicts the pressure
surface heat transfer by up to forty percent. When the
other model assumptions are held constant, the differences
among the augmentation models are only eight percent for
the vanes, and fifteen percent for the rotors. The AMLE
model had the smallest underprediction for the vanes. Had
it been restricted to just the leading edge region before be-
coming the AMS model, the overprediction of 12 percent
for the rotor suction surface would have been reduced to
nearly zero.

The heat transfer is underpredicted using the AMS,
AMLE, or SKVF models with the SD variation of Tu.
When the SD assumption was replaced by the constant k
assumption, there was nearly a six percent increase in heat
transfer. This indicates that the constant k assumption
would yield a more conservative and accurate prediction.

Neither the assumption that there was no relami-
narization (NR), nor assuming that the relaminarization
was not lagged (RY) improved the accuracy of the pre-
dictions. The AGS(A) transition length model was better
than the SWGM(S) model only for the vane pressure sur-
faces. There was no improvement for the vane suction
surface, nor for the rotor surfaces.

Generally, a constant value for AT(AC) showed
improved agreement with data. Calculations using the
Cebeci-Smith[36] variation of AT with P were close to
those for AT = 26. Because of relaminarization, the effects
of varying AT were muted in the five baseline models.

The deviation in average heat transfer follows the +
sign. For the preferred models it was generally less than
fifteen percent. While it is desired that this value be lower,
it is inevitable that there is some variation in the accuracy
of the experiments.

The values in the column labeled “Diff” are the av-
erage for the deviations for individual cases. A low value
for “Diff” indicates that on average the model predicted
the heat transfer accurately everywhere on the surface, in
addition to accurately predicting the average heat for the
surface. Unfortunately, the “Diff” values generally exceed
20%. The high value of 28% for “Diff” shown for the the
vane suction surface using the SK model indicates that
while this model accurately predicts the average vane suc-
tion surface, the local heat transfer is not well predicted.
Since “Diff” values are determined from the square of the
difference between the predicted values and individual data
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Table IV. Sensitivity of predicted heat transfer to turbulence

Heat transfer Stators Rotors
difference | Pressure | Suction | Pressure | Suction
Model minus No Aug. side side side side
SK - No Aug. 5.5 2.2 9.6 4.6
AMS - No Aug. 2.1 0.7 4.1 1.8
SKVF - No Aug. 2.0 0.7 2.9 1.3
AMLE - No Aug. 2.8 1.2 4.5 2.7
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points, positional uncertainties in regions of high heat
transfer gradients contribute to the magnitude of this
quantity.

Table IV summarizes the effects of different augmen-
tation models by showing the sensitivity of each model to
turbulence intensity. The values in the table are the per-
cent increase in heat heat transfer due to a one percent
increase in turbulence. The values are calculated from the
percentage increase in heat transfer using each model over
the no augmentation calculation. This quantity is divided
by the inlet Tu. These values are only due to augmen-
tation, since the same value of T'u was used to calculate
transition for models with and without augmentation. For
an inlet T'u of 10%, the AMS model gave a rotor pressure
side augmentation of 41%. The augmentation models are
linear in T'w and are approximately proportional to L~1/3.
Therefore, at a turbulence intensity of 10%, an increase
in Tu of 1 percentage point, or a decrease in L of 30% is
expected to result in a 4% increase in heat transfer.
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